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Summary

Last year, we published two articles “The countless opportunities unlocked by 
satellite images” and “From sensors to display, a journey towards usable satellite 
images” providing readers with a comprehensive overview of satellite images. In 
the first piece, we delved into the world of satellite imagery and discussed various 
aspects such as its applications, technological advancements, and its impact on 
different industries. In the second, we presented the post-processing to be applied 
to raw satellite data before mapping the resulting image onto a common map sys-
tem. Through our articles, we aimed to educate readers about the vast potential 
of satellite imagery and how it continues to shape our understanding of the world.

Building upon our previous exploration of satellite images, in this whitepaper, we 
delve into a concrete case study: urban heat islands. Recognizing the importance 
of this phenomenon and its implications for urban environments, we have created 
this whitepaper to provide a comprehensive understanding of the subject. 

In a past whitepaper, we delved into the causes and effects of heat islands, exa-
mining the factors that contribute to their formation, and the subsequent impacts 
on human health, energy consumption, and overall urban climate. Additionally, we 
explored the potential mitigation strategies that can be employed to alleviate the 
adverse effects of heat islands. We also explained how an efficient mobilization 
of artificial intelligence can allow us to better understand the situation across a 
territory and support the political decision making to address it.

In this whitepaper, we shift our focus towards the role of satellite imagery in stu-
dying heat islands. We will showcase the specific satellite sensors and image pro-
cessing operations utilized to detect and monitor heat islands, highlighting their 
capabilities in mapping surface temperatures and identifying vulnerable areas. 
Then, we will take a deeper dive into the computational aspects of studying heat 
islands. We will explore the intricacies of calculating surface temperatures, map-
ping heat distribution, and generating visual renderings that aid in visualizing and 
circling heat islands. Additionally, we will highlight how we can use these detec-
tions to compute vulnerability indices useful for urban planning and public health 
interventions.
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https://heka-ai.medium.com/the-countless-opportunities-unlocked-by-satellite-images-3b1cf49bc4a8
https://heka-ai.medium.com/the-countless-opportunities-unlocked-by-satellite-images-3b1cf49bc4a8
https://heka-ai.medium.com/from-sensors-to-display-a-journey-towards-usable-satellite-images-e07dd1b49ebf
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https://www.sia-partners.com/fr/publications/publications-de-nos-experts/intelligence-artificielle-la-lutte-contre-les-ilots-de
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BAND SPECTRAL WAVELEN. [µm] GEOM. [m] SENSOR

1 aerosols 0.435 – 0.451 30 OLI

2 blue 0.452 – 0.512 30 OLI

3 green 0.533 – 0.590 30 OLI

4 red 0.636 – 0.673 30 OLI

5 NIR 0.851 – 0.879 30 OLI

6 SWIR-1 1.566 – 1.651 30 OLI

7 SWIR-2 2.107 – 2.294 30 OLI

8 pan 0.503 – 0.676 15 OLI

9 cirrus 1.363 – 1.384 30 OLI

10 TIR-1 10.600 – 11.190 100 TIRS

11 TIR-2 11.500 – 12.510 100 TIRS

Introduction

Urban Heat Islands

The physical phenomenon of urban 
heat islands (UHI) consists of an in-
crease in air and surface temperatures 
within urban areas, at the street or 
neighborhood level, compared to pe-
ripheral or rural areas.

According to a study published by cli-
matologists from Drias - Météo-France 
on June 16, 20221 which identifies the 
French cities that will suffer the most 
from particularly high summer tempe-
ratures from 2040 onwards, forty-five 
of them will experience at least ten 
additional abnormally hot days during 
the summer. In order to avoid beco-
ming unbearable, our city centers 
must adapt to this well-identified and 
particularly unpleasant phenomenon 
during periods of intense heat. Which 
will increase in frequency and intensity 
due to global warming.

Sia Partners is a next-gen consulting 
firm that invests heavily in data science 
and explores the possibilities offered 
by artificial intelligence to meet its 
clients’ use cases and needs. Faced 
with the challenges of climate change, 
Sia Partners is enriching its service 
offering to support private and public 
actors in establishing their transition 
strategy. In this regard, we have de-
veloped a methodology for analyzing 
satellite images to identify and cha-
racterize urban heat islands in order to 
better understand the existing situation 
and inform decision-making.

Landsat 8 images

Urban heat islands (UHIs) are areas 
within urban regions that are warmer 
than the surrounding rural areas due to 
the absorption and retention of heat by 
urban surfaces and human activities.

Landsat 8 satellite imagery can be used to detect and delimit urban heat islands 
by analyzing the thermal properties of the surface.

Landsat 8 is the product of a collaboration between NASA and the United States 
Geological Survey (USGS). It is a satellite equipped with a suite of sensors that can 
collect data in various spectral bands, including visible, near-infrared, shortwave 
infrared, and thermal infrared. Landsat 8 has 11 spectral bands:

The bands are used for various purposes, such as vegetation monitoring, cloud 
and snow cover mapping, atmospheric correction, and mineral identification. The 
panchromatic band provides high-resolution imagery with 15 m spatial resolution, 
while the rest of the bands have 30 m spatial resolution. The thermal infrared bands 
provide data on surface temperature, which is useful for monitoring and studying 
natural resources, and analyzing the impacts of natural hazards, such as wildfires.

(1) �Publication of the results of the study in Le Figaro: 
https://www.lefigaro.fr/sciences/les-villes-les-plus-menacees-par-l-explosion-des-jours-et-des- heatwave-nights-20220616

(2) Freie Universitat Berlin online course, Landsat 8 course: https://blogs.fu-berlin.de/reseda/landsat-8/
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Extraction of new bands

There are many different indices that 
can be extracted from satellite bands, 
depending on the sensor and the speci-
fic bands used. Each index is designed 
to highlight a specific feature or cha-
racteristic of the Earth’s surface, such 
as vegetation, water bodies, or urban 
areas, and can be used for a variety 
of remote sensing applications, inclu-
ding land use and land cover mapping, 
environmental monitoring, and natural 
resource management.

Vegetation detection

A popular remote sensing metric for 
assessing the health and density of ve-
getation is the Normalized Difference 
Vegetation Index (NDVI). For photo-
synthesis, plants - especially healthy 
ones - absorb much in the visible 
spectrum, particularly the red, whereas 
near-infrared (NIR) energy from the sun 
is reemitted by leaf cells. The following 
formula is used to determine NDVI:

	
NDVI =

 �NIR – Red 
NIR + Red

 

Source: Nasa 

NDVI values range from -1 to 1 with po-
sitive values indicating the presence of 
vegetation. Values close to 1 indicate 
dense vegetation, while values close to 
0 represent sparse vegetation or bare 
soil. Values less than 0 can indicate 
water or clouds.

NDVI is commonly used in remote sen-
sing applications to map vegetation and 
monitor crop growth, detect changes in 

land use and land cover, and to study 
the impacts of climate change and en-
vironmental factors, such as drought 
and flooding, on vegetation.

Water detection

The Normalized Difference Water In-
dex (NDWI) is a remote sensing index 
that is used to identify and map open 
water bodies such as lakes, rivers, and 
wetlands. NDWI is based on the fact 
that open water bodies reflect more 
near-infrared light than they do green 
light.

NDWI is calculated using the following 
formula:

	
NDWI =

 �Green – NIR 
 Green + NIR

NDWI values range from -1 to 1, with 
positive values indicating the presence 
of water. Values close to 1 indicate the 
presence of open water, while values 
close to 0 indicate the presence of ve-
getation or other non-water surfaces.

NDWI is commonly used in remote 
sensing applications to map and mo-
nitor the extent and changes of water 
bodies, for water resources manage-
ment, wetlands and coral reef health 
monitoring, and for the detection of 
floods and droughts.

NDWI could be used as a comple-
mentary tool to other indices like 
MNDWI (Modified NDWI), and other 
water indices like AWEI (Automated 
Water Extraction Index) and OI (Open 
Water Index) to obtain more accurate 
results.

Urban detection

There are several different indices that 
can be used to identify and map urban 
areas, including the Normalized Diffe-
rence Built-Up Index (NDBI), the Nor-
malized Difference Impervious Surface 
Index (NDISI), and the Urban Index (UI).
NDBI is one of the most popular indices 
and is calculated using the following 
formula:

	
NDBI =

 �SWIR1 – NIR 
SWIR1 + NIR

NDBI values range from -1 to 1, with po-

sitive values indicating the presence 

of built-up surfaces such as roads, 

buildings, and other urban structures. 

Values close to 1 indicate densely built-

up areas, while values close to 0 indi-

cate sparsely built-up areas or natural 

surfaces.

Another index used is the Urban In-

dex (UI) where SWIR1 is replaced by 

SWIR2:

	
UI =

 �SWIR2 – NIR 

SWIR2 + NIR

Urban indices can be used in remote 

sensing applications to map and 

monitor the extent and changes of 

urban areas, for urban planning and 

management, and for environmental 

monitoring.

Land Surface Temperature

As mentioned above, infrared satellite 

systems use specialized sensors to de-

tect infrared radiation emitted from the 

Earth’s surface. The thermal infrared 

radiation (TIR) region encompasses 

both the middle-wave (MWIR) and long-

wave infrared (LWIR).

Land Surface Temperature (LST) is a 

crucial parameter for understanding 

the Earth’s energy balance and climate. 

It is frequently used in a wide range of 

applications, such as tracking changes 

in land use and land cover, assessing 

the effects of urban heat islands, exa-

mining water use, and tracking the im-

pacts of climate change on the planet’s 

surface. 

Using Landsat8 OLI/TIR’s LST has 

many advantages for monitoring the 

Earth’s surface, including its ability 

to detect temperature changes at a 

high spatial resolution (30 meters 

resolution), its ability to detect tem-

perature changes over time (2 weeks 

resolution), and its ability to detect 

temperature changes in areas where 

ground-based measurements are not 

feasible or available.
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Google Earth Engine

Google Earth Engine (GEE) is a cloud-
based platform for analyzing and visua-
lizing satellite and aerial imagery. It is 
developed and maintained by Google, 
in collaboration with a number of aca-
demic and research institutions.

GEE provides access to a massive 
archive of satellite imagery, including 
images from Landsat, Sentinel, and 
other satellite missions. The platform 
also includes a wide range of tools for 
analyzing and visualizing the image-
ry, including image processing algo-
rithms, machine learning models, and 

interactive visualization tools. GEE 
also provides access to other types of 
data such as weather forecasts, digi-
tal elevation models, and population 
datasets.
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Urban Heat Islands 
detection and 
characterization

Heat islands are caused by multiple 
factors, and their prediction requires 
combining different types and sources 
of data and searching for patterns that 
lead to this phenomenon. First, we 
need to detect existing heat islands 
using the surface temperature from 
Landsat 8 images, then we characte-
rize the detected islands using satellite 
images and external data.

Image generation

We begin by extracting a collection 
of Surface Reflectance (SR) Landsat 
8 images acquired between April and 
November of years 2018 to 2022. The 
SR data are images that have been 
corrected for atmospheric effects and 
that are also available in GEE. Limiting 
the dataset to April and November 
ensures cloudless images and strong 
heat islands. It is possible to limit the 
dataset to a shorter period to study 
the evolution of heat islands through 
time or the effect of some counter mea-
sures. However, when looking to detect 
urgent zones in need of immediate ac-
tion, it is better to enlarge the temporal 
scope of the dataset.

Then, we apply a mask to each image 
to remove all pixels corresponding to 
clouds before averaging all the pixels 
corresponding to the same coordinate 
across the dataset. The resulting image 
is a cloudless and aggregated image 
that covers almost the entirety of the 
world. Then, that image is cropped to 
the area of interest defined by a poly-
gon of coordinates.

Land Surface Temperature 
computation

To compute Land Surface Temperature 
(LST) from Landsat 8 imagery, several 
steps are necessary. 

Brightness Temperature

First, when using raw images, (Level-1 
Data Product) Digital Number (DN) va-
lues of the thermal band B10 should 
be converted to radiance values using 
the radiometric calibration coefficients 
provided by the metadata3: 

Lλ = MLQcal + AL

where:

• �Lλ is the TOA (top of atmosphere) 

spectral radiance

• �ML is the Band-specific multiplicative 

rescaling factor from the metadata = 

RADIANCE_MULT_BAND_10

• �AL is the Band-specific additive 

rescaling factor from the metadata = 

RADIANCE_ADD_BAND_10

• �Qcal are the Quantized and calibrated 

standard product pixel values (DN)

After that, Planck’s law equation is 
used to convert radiance values to bri-
ghtness temperature.

BT =
      K2    

–  273.15
log ( K1 + 1 )Lλ

Where:

• �BT is the brightness temperature in 

degrees Celsius

• �Lλ is the TOA spectral radiance

• �K1 is the Band-specific thermal 

conversion constant from the 

metadata = K1 _CONSTANT_BAND_10 

• �K2 is the Band-specific thermal 

conversion constant from the 

metadata = K2_CONSTANT_BAND_10

However, since we use the Landsat 8 
Surface Reflectance catalogue in GEE, 
the provided band B10 is already the 
calibrated top-of-atmosphere (TOA) 
Brightness Temperature, but rescaled 
for memory reasons. The calibration 
parameters are provided by USGS4. 
Which means:

BT = STB10
 ⋅ 0.00341802 + 149

Emissivity 

Next, we need to compute emissivity, 
which is a measure of the ability of 
a surface to emit thermal radiation.  
Emissivity is usually estimated using 
land cover classification or emissivity 
libraries. It can also be estimated using 
other Landsat 8 bands, however with 
less accuracy. In this study we use a 
vegetation cover method described 
by5. First, we compute the vegetational 
index (PVI) using the following formula: 

FVC =
 (  NDVI – NDVIbare  )2NDVIveg – NDVIbare

Where NDVIveg and NDVIbare are the 
NDVI values of completely bare and ful-
ly vegetated pixels, respectively. These 
values can be used from literature or 

(3) �Ermida, Sofia & Soares, Patrícia & Mantas, Vasco & Göttsche, Frank-M & Trigo, Isabel. (2020). Google Earth Engine Open-Source Code for Land Surface 
Temperature Estimation from the Landsat Series. Remote Sensing. 12. 1471. 10.3390/rs12091471.

(4) USGS website; Using the USGS Landsat Level-1 Data Product: https://www.usgs.gov/landsat-missions/landsat-collection-2-level-2-science-products
(5) USGS website; Using the USGS Landsat Level-1 Data Product: https://www.usgs.gov/landsat-missions/using-usgs-landsat-level-1-data-product
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Input image

Landsat 5 TM/Landsat 8 Collection

1 Tier 1 Raw Scenes

Calculate Surface Temperature (°C)

LST(°C) =
              TB

1 +
 (λ • TB) 

• ln(ε)ρ

Where λ is the central wavelength of emitted radiance, ρ=h*c/σ=1.438*10-2 m*°C, 
with σ is the Boltzmann constant (1.38*10-23 J/°C), h is the Planck’s constant 
(6.626*10-34J*s), c is the light velocity (2.998*108 m/s).

Calculate Top 
of Atmosphere Radiance

Lλ = ML • Qcal + AL

Where ML is the band-specific multipli-
cative rescaling factor from the image 
metadata, AL is the band-specific ad-
ditive rescaling factor from the image 
metadata, and Qcal is the quantised 
and calibrated standard product pixel 
values (DN).

Calculate surface emissivity

ε = 0.004 • Pv + 0.986

Where Pv is the proportional vegetation. 
Emissivity obtained using method from 
Sobrino et al. (2004).

Calculate NDVI

NDVI =
  NIR – R
NIR + R

Where NIR is B4/B5 and R is B3/B4 for 
L5/L8.

Calculate proportional vegetation

Pv =
 (  NDVI – NDVImin  )NDVImax – NDVImin

Where NDVImax = 0.5 and NDVlmin = 0.2.Convert Top of Atmosphere 
image to Top of Atmosphere 
Brightness Temperature (°C)

TB (°C) =
    K2  

– 273.5
ln

 ( 
K1 + 1)Lλ

Where K2 is the calibration constant 
(K ), K1 is the calibration constant (W/m2 
*sr*μm) and Lλ is the spectral radiance.

DIAGRAM OF LST CALCULATION USING THE TIR BANDEMISSIVITY MAP OF AN AREA 
OF CLERMONT-FERRAND

BRIGHTNESS TEMPERATURE 
OF AN AREA OF CLERMONT-FERRAND LST OF AN AREA OF CLERMONT-FERRAND

computed by extracting the minimum 
value (bare) and maximum value (veg) 
of the NDVI band of the satellite image.

Emissivity values over vegetated areas 
at any given time, may then be derived 
using the

Vegetation-Cover method, which is 
defined as:

ε = FVC ⋅ εb,veg + ( 1 – FVC  )εb,bare

Where εb,veg and εb,bare are the emissivity 
of vegetation and bare ground for a gi-
ven spectral band b.

NB: It is important to note that emis-
sivity values can vary depending on 
the surface materials and conditions, 
so using an emissivity library or other 
data sources specific to the area of 
interest is recommended.

Land Surface Temperature

The formula used to calculate Land 
Surface Temperature (LST)6 from Bri-
ghtness Temperature (BT) and Emis-
sivity (ε) is known as the Stefan-Boltz-
mann Law. The formula is:

LST =
          BT        

–  273.15
1 +

 ( λ 
* BT

 ) * ln(ε) ρ

Where:
• �λ is he average wavelength of band 10 

• �ρ = h * cσ  in which σ is the Boltzmann 

constant, h is the Plank’s constant and 

is the velocity of light c

• �LST is the Land Surface Temperature 

in degrees Celsius, 

• �BT is the Brightness Temperature in 

Kelvin, 	

• �ε is the Emissivity, and ln is the natural 

logarithm.

The Stefan-Boltzmann Law is based on the relationship between the total radiant 

heat energy emitted by a surface and its temperature. This formula is commonly 

used in remote sensing applications, particularly for estimating LST from thermal 

remote sensing data.

Summary

 

(6) �GIS website; How to Use ArcGIS Pro to Calculate Land Surface Temperature (LST) from Landsat Imagery: 
https://www.gislounge.com/how-to-use-arcgis-pro-to-calculate-land-surface-temperature-lst-from-landsat-imagery/
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Physical variables

.Size of the urban heat island

.Geographic coordinates

.Maximum temperature

.�Temperature difference with areas 
near the UHI

.Topography

…

Explanatory variables

.�Rate of vegetation and protected areas

.Distance to roads

.Urban density

.Building types

.�Building energy consumption 
categories

.�Socio-demographic variables 
on the sensitivity of the area

...
SATELLITE IMAGE OF THE REGION 
OF INTEREST

LST MAP OF THE REGION SUPERPOSED 
BY THE DETECTED URBAN HEAT ISLAND 
POLYGONS

Urban heat islands 
detection

Setting the temperature 
threshold

Now with the LST computed, we can 
detect urban heat islands. By using a 
clustering algorithm on the LST values 
of the image, we create 3 categories 
corresponding to low, medium, and 
high temperatures. A simple K-Nearest 
Neighbors algorithm is enough for this 
purpose. The third quantile of LST va-
lues of the high temperature category 
is used to fix the threshold needed 
to limit heat islands. However, the 
threshold can also be fixed empirically.

UHI contour detection

By filtering tempertures less than the 
computed threshhold, a mask image is 
created where hot pixels are labeled 

as 1. Then the Connected Component 
Analysis (CCA) method is applied to 
identify and group the UHIs within 
the mask. This technique involves 
examining the mask’s pixel values 
and recognizing clusters of connec-
ted or adjacent pixels that share the 
same value. Each of these clusters 
are assigned a unique label, essen-
tially grouping the pixels belonging 
to a single urban island together. By 
applying this method, we obtain a 
labeled mask where each island is 
distinguished by its own label or iden-
tifier. This allows us to easily perform 
subsequent analyses or operations on 
each island, such as measuring their 
properties or isolating them for further 
processing. 

Now that individual UHIs are identified, 
we compute each contour, simplify 
their geometries to get smooth poly-
gons, and filter the UHIs smaller than 
a fixed area.

Urban heat islands 
characterization 

Describing UHIs in detail to help iden-
tify their causes and prioritize them 
according to their impact can provide 
added value.

The algorithm puts out a feature col-
lection of geometries corresponding 
to UHIs, each feature with a set of pro-
perties. The properties include the UHI 
area, perimeter, centroid, maximum 
temperature, and mean NDVI, NDWI 
and NDBI values. The feature collec-
tion can be used to further analyze 
and visualize UHIs in the AOI. In the 
following table, we indicate concrete 
examples of further variables that we 
can measure:
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Going further: 
UHI potential index

Urban heat islands have been a ma-
jor concern for urban planners and 
policy-makers due to their adverse 
impacts on human health and the en-
vironment. In this regard, a correlation 
analysis between UHI detections and 
explicative variables mentioned above 
can provide valuable insights into the 
potential drivers of UHIs. 
By examining the correlation coef-
f icients between these variables 

and UHI detections, it is possible to 
identify the key factors contributing 
to UHIs in a particular area. Additio-
nally, by using these correlation coef-
ficients, it is also possible to create a 
new index of UHI potential that can 
be used to predict the likelihood of 
an area becoming a UHI in the future. 
This index can be useful in developing 
effective urban planning strategies 
and policies aimed at mitigating the 

impacts of UHIs. For example, if the 
index indicates that a particular area 
has a high UHI potential, planners may 
consider implementing measures such 
as increasing green spaces, promoting 
the use of reflective surfaces, or en-
couraging the use of energy-efficient 
building materials.
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Study of the 
effectiveness 
of UHI counter 
measures

The Oasis course project was selected 
in October 2018 as part of the «Inno-
vative Urban Actions» call for projects, 
a European Union initiative funded by 
the European Regional Development 
Fund-ERDF. This European initiative 
helps urban authorities to experiment 
with bold and innovative solutions to 
urban challenges. Ten Parisian schools 
have been selected to participate in 
this project between 2019 and 20217. 
We study the impact of this project on 
two schools: Tandou and Emeriau kin-
dergartens.

The Tandou kindergarten

The Tandou project started in July 
2020 and ran until October 2020. The 
Tandou schoolyard was repurposed 
into a versatile, recreational space 
with:

• �An undergrowth area for playing with 

additionnal trees and vegetation 

as well as sliding structures. 

• �A garden with new trees and a vegetated 

pergola in front of the glass building.  

• �New learning supports such as a vege-

table garden.

The Emeriau kindergarten

From July 2020 to October 2020, a 
construction site transformed the old 
school yard into an «Oasis» yard with 
the following additions:

• Water management

• Water collector

• �Rainwater directed 

to permeable planted surfaces 

• Biodiversity

• 2 trees planted

• Recreational facilities

• �Playful climbing and sliding 

mound in cushioning shavings, 

and a tobogan

• �Living wicker tunnel 

and a wicker hut

• Via ferrata

• River

 
 

Before and after 
project study

We begin by setting up the area of 
interest using a hand-made boundary 
of each school. The satellite views in 
the following graphs are centered on 
the defined geometries to provide a 
focused display. 

We then filter and process satellite 
imagery from the Landsat 8 Surface 
Reflectance dataset. The filtering is 
based on the spatial intersection with 
the defined geometry, a specific date 
range (a year before and a year after 
the Oasis project), and a maximum 

(7) �CAUE website; LE FEDER URBAN INNOVATIVE ACTIONS COURS D’ÉCOLES OASIS: 
https://www.caue75.fr/content/le-feder-urban-innovative-actions-cours-d-ecoles-oasis
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SATELLITE IMAGE OF THE TANDOU SCHOOL

One of the oasis schools of the european erdf project innovative urban action. 
1 map of the urban index (NDBI) and 2 of the local temperature (LST) around the school before 
(2019) and after (2021) the works.

1 2

SATELLITE IMAGE OF THE EMERIAU SCHOOL

One of the oasis schools of the european erdf project innovative urban action. 
1 map of the urban index (UI) and 2 of the local temperature (LST) around the school before (2019) 
and after (2021) the works.

1 2

cloud cover threshold. Additional 
bands, such as the Normalized Diffe-
rence Vegetation Index (NDVI), the 
Urbain Index (UI) and Land Surface 
Temperature (LST), are calculated and 
added to the images. 

To assess the changes before and 
after the construction works in 2020 
within the f iltered dataset, image 
composites are generated for each 
distinct observation year (2019, 2020, 
and 2021). These composites repre-
sent the mean value of the selected 
bands for each respective year. Sub-
sequently, the composites of 2019 and 
2021 are normalized using the 2020 
composite as a reference.

The normalization process involves 
subtracting and dividing the pixel 
values of the pixel values of the 2019 
and 2021 composites with pixel va-
lues of the 2020 composite. By ap-
plying this normalization, the resul-
ting images allow for visualizing the 
variations in selected bands before 
and after the construction activities 
that occurred in 2020. This analysis 
enables the identif ication and com-
parison of changes in the observed 
features, providing insights into the 
impact of this project during that 
period.

To visualize the processed data, the 
code applies visualization parameters 
to the image collection and overlays 
textual annotations on each image, 
indicating the corresponding year. The 
images are blended with an outline 
of the defined geometry and stored 
in separate collections for different 
parameters (e.g., LST - Land Surface 
Temperature and UI - Urban Index).

Finally, we create filmstrips from the 
image collections. The resulting visual 
outputs can be used to observe tempo-
ral patterns and changes in LST and UI 
within the area of interest.

Within the neighborhood, both 
schoolyards became a new biodiver-
sity relay point.

The generated GIFs provide a visual 
representation of the changes obser-
ved before and after the Oasis project 
in the surrounding area. Prior to the 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

project, the images display higher Land 
Surface Temperature (LST) and Urban 
Index (UI) values, indicating increased 
heat and urbanization in the region. 
Moreover, the Normalized Difference 
Vegetation Index (NDVI) values appear 
lower, indicating less vegetation cove-
rage. However, in the year following 
the project, the visuals illustrate a noti-
ceable decrease in LST and UI values, 

suggesting a reduction in heat and 
urban intensity. Additionally, the NDVI 
values exhibit an increase, indicating 
an improvement in vegetation growth. 
These visual observations demons-
trate the potential positive impact of 
the Oasis project on the local environ-
ment, including lower temperatures, 
reduced urbanization, and enhanced 
vegetation cover.
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Conclusion

The tool developed by Sia Partners demonstrated that the use of Landsat 8 images 
has proven to be an effective tool in detecting and characterizing urban heat is-
lands. The data obtained through these images and other data sources can provide 
valuable insights into the extent and severity of heat islands in urban areas, as well 
as the effectiveness of countermeasures to mitigate their impact.

With the continued growth of urbanization and the increasing threat of climate 
change, it is essential that we continue to explore new technologies and methods 
for monitoring and managing urban heat islands.

By working with city planners, policymakers, and community members, and leve-
raging the power of remote sensing technology, we can create more sustainable, 
resilient, and livable cities for all.
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About
Sia Partners
Sia Partners is a next-generation management consulting firm and pioneer 
of Consulting 4.0. We offer a unique blend of AI and design capabilities, 
augmenting traditional consulting to deliver superior value to our clients. With 
expertise in more than 30 sectors and services, we optimize client projects 
worldwide. Through our Consulting for Good approach, we strive for next-le-
vel impact by developing innovative CSR solutions for our clients, making 
sustainability a lever for profitable transformation.

www.sia-partners.com


